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Abstract In neutral zinc the 4p2 configuration lies above
the 3d104s ionization limit and its levels become perturbers
in the continuum. Lines have been identified in the Zn I
spectrum for the 4s4p 3P◦ − 4p2 3P multiplet, whereas no
lines have been found for transitions to 4p2 1D or 1S. In this
paper, cross sections for photoionization from 4s4p levels are
reported that reveal the positions and widths of the 4p2 reso-
nances. Calculations were performed using the multiconfigu-
ration Hartree-Fock (MCHF) and B-spline R-matrix (BSR)
method. Results from Breit–Pauli calculations that ignore the
background continua are also presented. Included in the latter
are energies for the 4s2 1S0, 4s4p 1P◦

1 , 3P◦
1,2,3, 4s4d 1D2,

4p2 3P1,2,3,
1D2 and 1S0 levels and transition data (transi-

tion energies, line strengths, f-values, and A-rates) for all E1
transitions between these levels. Transition energies and the
agreement in the length and velocity values, particularly for
allowed transitions, indicate the accuracy of the computatio-
nal model. Line widths are compared with other estimates.
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1 Introduction

The ground state of neutral zinc is 3d104s2 and the 4p2

configuration lies above the 3d104s ionization limit. In 1925
Sawyer and Reese [1] identified lines in the observed Zn I
spectrum as belonging to the 4s4p 3Po – 4p2 3P multiplet
in spite of the upper levels being above the ionization limit.
They noted that two of the lines had a diffuse character (see
Fig. 1 of Ref. [2]). In 1929 Selwyn [3] tentatively identified
these as transitions to 4p2 3P2 and shortly thereafter, in 1931,
Majorana [4] provided the first explanation of the line width,
introducing the notion of radiationless decay into the conti-
nuum. A definitive theoretical description of this process,
now referred to as autoionization [5], was presented in 1961
by Fano [6]. Often this process is described in terms of non-
relativistic theory, invoking at most the spin–orbit operator
which is one of the relativistic operators of the Breit–Pauli
Hamiltonian [7]. In 1970 Martin and Kaufman [2] derived the
positions of the 4p2 3P levels and also measured the width
of the 3P2 level as being 21.7 cm−1. From a simple inter-
mediate coupling calculation they estimated the width of the
4p2 1D2 and 1S0 levels to be 6,800 cm−1 and <170 cm−1,
respectively. The 1D2 and 1S0 levels have not as yet been
identified.

Early theoretical studies of Zn were non-relativistic. In
multiconfiguration Hartree-Fock (MCHF) calculations for
4s2 1S – 4s4p 1P transitions in the Zn iso-electronic
sequence, Froese Fischer and Hansen [8] found that core-
valence correlation decreased the oscillator strength by 11 %
in the neutral atom. Subsequent studies for 1D states [9]
found strong configuration interaction between 4s4d and 4p2

configuration states. Only results for the 4s4d 1D level were
reported for Zn. Completely missing was information about
the 4p2 1D level. More recent studies have included rela-
tivistic effects, although a number of publications for the
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Fig. 1 C(E)2 for the even parity J = 0, 1, 2 wave functions as a
function of the energy of the continuum electron

sequence report limited information for the neutral atom [10,
11]. Of particular interest are the autoionizing widths found
by Chantepie et al. [12] from fully relativistic calculations
for 4p2 3P0,1,2 to be 0.020, 0.31, and 23 cm−1, respectively,
for these three levels.

This paper begins with an investigation of the properties
of the wave functions for the 4p2 3P0,1,2, 1D2, and 1S0 states
when interaction with the continuum is neglected. Both cor-
relation and relativistic effects are found to be important. To
complete the study, energy levels are also determined for 4s2,
4s4d 1D2, and all levels of 4s4p. Transition probabilities
for all possible E1 transitions between levels are reported.
Comparison of computed and observed transition energies
and agreement in length and velocity forms of the oscilla-
tor strengths for allowed transitions, provide a measure of
the accuracy of the theoretical wave functions. The calcu-
lations are then extended by using the B-spline R-matrix
(BSR) method [13] to first compute the even parity conti-
nuum wave functions for J = 0, 1, 2 in the energy region of
the 4p2 perturbers and then the cross sections for photoio-
nization from the 4s4p levels. The weights of the perturbers
reveal the positions and widths of the resonances. These will
be compared with observation and other theory. Photoioni-
zation cross sections that show the position of resonances as
a function of wavelength will also be presented.

2 Background theory

According to Fano’s theory [6], described more recently in
standard texts [14,15], the wave function for a state in the
continuum with a total energy E can be partitioned into
a continuum component and a bound component of finite
radius, namely

�(γ L S; E) = �c(γc L S; E) + �u
b (γb L S). (1)

In this definition, �c(γc L S; E) is the energy dependent
continuum portion with the label (γc L S) while �u

b (γb L S)

is an unnormalized bound portion with the label (γb L S).
The 4p2 levels are all below the 3d104p ionization limit so
that the continuum portions are restricted to 4skl L S channel
functions, with the radial function Pkl(r) for the one-electron
continuum function normalized so that

Pkl(r) →
√

2

kπ
[Fkl(r) cos δl + Gkl(r) sin δl ] , (2)

asymptotically at large r . In this definition the functions
Fkl(r) and Gkl(r) are regular and irregular Coulomb func-
tions, δl is the short-range phase shift, and k2 = 2(E −
E0) is the energy of the one-electron continuum function, in
Rydbergs, with the total energy E and the 3d104s ioniza-
tion limit E0 in atomic units. It is convenient to express the
contribution to the wave function from the bound component
in terms of a normalized function by introducing an energy
dependent coefficient C(E) so that

�u
b (γb L S; E) = C(E)�n

b (γb L S; E), (3)

where the superscripts u and n refer to unnormalized and nor-
malized functions, respectively. Then C(E)2 is the weight of
the perturber in the continuum wave function. In the spline-
Galerkin method applied by Brage et al. [16] to the calcula-
tion of positions and widths for bound states in the continuum
of He and H− such as 2s2p, the function C(E)2 determined
the position and the width of the resonance. This method
allows the perturber to be a function of the energy and is the
method used in the present paper.

Often the bound component is assumed to be independent
of E and then, by the “Golden Rule” [14,15], the width at
half height of the resonance is

� = 2π〈�c(γc L S; E) | H − E | �n
b (γb L S)〉2 (4)

and the autoionization rate (in seconds) is

A = 2π

h̄
〈�c(γc L S; E) | H − E | �n

b (γb L S)〉2. (5)

When the bound and continuum components are orthogo-
nal, � is proportional to the square of the interaction matrix
element where, for our purposes, the Hamiltonian H is the
Breit–Pauli Hamiltonian.

At this point it is important to remember that the many-
electron Hamiltonian for Zn, has both a discrete spectrum and
continuous spectrum. Of interest is that portion of the conti-
nuous spectrum for which the wave function has a significant
4p2 component. The discussion so far has been independent
of any physical process. With reference to photoionization,
the presence of a 4p2 component distributes the cross section
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for excitation from a given initial state to an energy range.
The energy, k2, of the one-electron continuum function is
the energy of the ejected electron, usually given in eV in
experiment. The same wave function may be used to des-
cribe other physical processes such as radiative decay. For
this reason we shall refer to k2 as the continuum electron
energy which, by definition, is the total energy relative to the
3d104s ionization limit.

In this paper we investigate the nature of the bound com-
ponent to explain why the 4s4p 3Po – 4p2 3P multiplet is
observed with a noticeable line width for transitions to 3P2,
whereas no line has been identified for the 4s4p 1Po

1 – 4p2

1D2 or the 4s4p 1Po
1 – 4p2 1S0 transition. As predicted by

Majorana, the line width for transitions to the 3P2 level is due
to a relativistic effect arising primarily from the spin–orbit
operator, thereby giving the bound portion of the 3P2 level
a 1D2 component. It will be shown that 3P1 also acquires
some width.

3 Computational method

A Breit–Pauli calculation includes relativistic effects to first-
order in α2, where α is the fine-structure constant. It starts
with the determination of non-relativistic radial functions for
the orbitals. In this work, they are computed using the multi-
configuration Hartree-Fock (MCHF) approximation [7].
Briefly, the atomic state wave function �(γ L S) is expan-
ded as a linear combination of configuration state functions
(CSFs), denoted by �(γ L S), so that

�(γ L S) =
∑

i

ci�(γi L S). (6)

Each CSF is an antisymmetric sum of products of one-electron
spin–orbitals and an eigenfunction of the total orbital momen-
tum and spin angular momentum operators L2, Lz, S2 and
Sz . The radial functions of the orbitals depend only on the
nl quantum numbers, and it is assumed that all spin–orbitals
define an orthonormal set.

For each configuration and term the wave function, as
given by Eq. 6, included expansions over all CSFs of the form
3d10nln′l ′, where n ≤ n′ ≤ 7 and l, l ′ ≤ 4 (or g-orbitals) for
valence correlation and over CSFs of the form 3d94lnl ′, n′l ′′
for core-valence correlation, with similar limits as for valence
correlation. The calculations assumed the same 1s, 2s, 2p,

3s, 3p, 3d orbitals for all states. These were defined to be the
Hartree-Fock (HF) orbitals for the ground state.

A number of strategies may be applied for determining the
additional orbitals. Once they are known, they can be used in
a configuration interaction calculation with matrix elements
computed using the Breit–Pauli Hamiltonian, H ≡ HBP,
that includes relativistic operators of order α2. Some of these

operators are diagonal in L and S and are referred to as the
relativistic shift [7]. They do not contribute to the mixing
of L S terms in the wave function. The remaining operators
are diagonal in J . They determine the fine-structure splitting
and hence are known as the fine-structure operators. There
are three such operators. The spin–orbit operator (s-o) is a
one-body operator that produces non-zero matrix elements
only between configuration states of the same configuration
or between configurations that differ by a single nl → n′l
excitation. The others are two-body operators, namely spin-
other-orbit (s-o-o) and spin–spin (s–s). They can be non-zero
between many configuration states that differ by at most two
electrons. They become important, for example, when matrix
elements of the spin–orbit operator are zero. The eigenstates
of a Breit–Pauli interaction matrix represent the expansion
coefficients for an atomic state wave function in intermediate
or L S J coupling.

Though expansions in the intermediate coupling approxi-
mation could be defined in terms of configurations and all
possible couplings for a selected J , in the present work the
expansions are defined by L S terms. Thus

�(γ L S J ) =
∑
L S

∑
i

ci,L S�(γi,L S L S J ). (7)

In practice, the list of CSFs for a Breit–Pauli calculation is
the concatenated list of CSFs for selected terms rather than
all possible L S terms for given J and parity.

In addition to the expansions, the results of a calculation
depend on the radial functions used for the orbitals. These
are assumed to be the same orthonormal set for all L S terms
included in the expansion. In order that these be determined
optimally, simultaneous MCHF optimization [17] was used
for one or more L S terms or eigenstates of a given term.
All MCHF calculations were performed using the atsp2K
atomic structure package [18].

4 Breit–Pauli calculations and results

Table 1 lists the L S expansions included in a Breit–Pauli
calculation for groups of atomic states. Only the final calcu-
lations included the terms listed in parentheses. Calculations
for the 4s2 1S0 ground state and the levels of 4s4p were
straightforward. Because of the strong configuration interac-
tion between 4s4d and 4p2 CSFs, optimizing on all terms of
4p2 was more complex and several methods were applied.

The 4p2 3P component can have a non-zero interaction
with a continuum channel of the same parity and L S. Because
4p2 lies below the 3d104p ionization limit, no such back-
ground continuum exists and non-relativistic calculations can
be performed in the same manner as for a bound state. Thus
calculations for 4p2 3P present no problems for the MCHF
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Table 1 L S terms included in Breit–Pauli calculations for different
eigenstates

Eigenstates L S terms in the expansion

4s2 1S0
1S 3P

4s4p 3Po
0,1,2, 1Po

1
3Po 1Po

4s4d, 4p2 3P0,1,2, 1D2, 1S0
3P 1D 1S ( 1P 3S 3D)

method. In our first study of the composition of the 4p2 3P
bound component, it was assumed that these 3P radial func-
tions could be used for all terms when generating the Breit–
Pauli interaction matrix for 3P, 1D, and 1S components, and
that contributions from 1P, 3S, and 3D as well as any possible
interaction with the continuum could be ignored. The energy
levels from this calculation are shown in Table 2 and referred
to as calculation BP(1). This optimization process for radial
functions ignored the strong interaction found earlier [9] bet-
ween the 4p2 and 4s4d 1D configuration states. In the cal-
culation denoted by BP(2), radial functions were optimized
simultaneously for the lowest 3P and the three lowest 1D and
1S eigenstates. The 4snd expansions for 1D were truncated
to include only 4s4d and 4s5d configuration states so that the
dominant component of the third 1D eigenstate was 4p2 1D.
Similarly, the expansions for 1S included only 4s2 and 4s5s
so that the third eigenstate was 4p2 1S. The results are shown
in Table 2 as BP(2). These results also ignored contributions
from 1P, 3S, and 3D. Not listed are the energies of 4s5s 1S
and 4s5d 1D. The core-valence expansions that were used
ignored the core-valence interaction of the 5l electron, for
example, and so the energy of 4s5d 1D cannot be expected
to be as accurate as that for 4s4d 1D. Also, because of the
truncated 4snl CSF expansions, these eigenstates represen-
ted interactions with the 4snd configuration states rather than
physical states. In fact, the mean radius of the 5d orbital was
166 a0.

Table 2 compares the Breit–Pauli (BP) energy levels rela-
tive to the energy of the ground state from these two cal-
culations with similar observed data [19]. The lower levels
appear to be computed more accurately than the higher levels
since (BP – obs.) is smaller. By matching the ionization limit
instead, we find the largest difference to occur for the lower
levels. Furthermore, all energies are too high, thus indica-
ting that the calculations have neglected more correlation
in the lower states than in the higher ones, an observation
consistent with theory. Relative to the ionization limit, the
BP(2) results for 4p2 appear to be better. But the fact that
the 4p2 3P1 energy level was raised by 450 cm−1 when the
variational principle was applied simultaneously to seven L S
states casts doubt on this conclusion. According to the varia-
tional principle, the wave function with the lower energy is
the better wave function, and the difference with the observed
energy is a reflection of the incompleteness of the correlation
included in the computational model.

The larger components of the wave function for 4p2 3P2

and 1D2 are given in Table 3. It should be remembered that
this expansion is in terms of a single orthonormal basis for
all states and that only 4s, 4p, 4d are spectroscopic orbitals
with the expected nodal structure. The others are variatio-
nal orbitals from an orthonormal set that minimize the total
energy functional. In particular, 4 f is a contracted orbital
with mean radius of 1.39 a0 whereas 5 f has about the same
mean radius as 5p. The expansions show the importance of
4p5p and 3d94s4p2 to both states and of 4p5 f to the 1D2

state.
These wave functions were then used to compute E1 tran-

sitions between all levels. Table 4 reports the transition wave-
length (λ, in Å), line strength (S), oscillator strength ( fik),
and transition rate (Aki , in s−1), as well as the discrepancy in
length and velocity form results of the transition rate (T) in
percent. For spin-allowed transitions, T is a reliable accuracy

Table 2 Computed energy
levels compared with
observed [19] values

a Assuming the same ground
state energy
b Assuming the same ionization
limit

Eigenstate Energy levels (in cm−1) BP(2) - obs. Energy

obs. BP (1) BP (2) (a)a (b)b BP (3) BSR

4s2 1S0 0 0 0 0 596

4s4p 3Po
0 32,311 32,013 32,013 −298 298

3Po
1 32,501 32,193 32,193 −309 287

3Po
2 32,890 32,553 32,553 −337 259

1Po
1 46,745 46,438 46,438 −307 289

4s4d 1D2 62,459 – 61,969 −490 106 61,985

4s 2S1/2 75,769 – 75,173 −596 0 75,452

4p2 3P0 80,175 79,196 79,661 −514 82 79,465 79,459
3P1 80,394 79,443 79,893 −501 95 79,677 79,672
3P2 80,742 79,821 80,257 −535 61 80,048 80,050
1D2 – 94,438 86,198 85,361 84,577
1S0 – 92,182 93,933 92,896 92,470
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Table 3 Wave function
expansions for 4p2 3P2 and 4p2

1D2 states of BP(2) calculations

4p2 3P2 4p2 1D2
CSF L S CSF L S

4p2 3P 0.972 4p2 1D 0.935

4p5p 3P −0.153 4s4d 1D 0.202

3d94s4p2(1 D) 3P −0.058 4p5p 1D −0.187

4p6p 3P −0.049 4p5 f 1D −0.104

4d6d 3P 0.048 3d94s4p2(3P) 1D −0.069

6d2 3P 0.047 4s5d 1D 0.065

3d94s4p2(3 P) 3P −0.042 4d6s 1D 0.059

4p2 1D 0.040 6d2 1D 0.048

3d94s4p(4P)4 f 3P −0.034 4d6d 1D −0.048

5p2 3P −0.034 5p2 1D 0.043

4d2 3P 0.031 4p2 3P 0.041

Table 4 Data for transitions
between bound levels in neutral
Zn

T is the discrepancy in the length
and velocity values of the transi-
tion rate, Aki , given in percent.
Calculations for the 4p2 levels
neglected interactions with the
continuum

Multiplet terms gi gk λ (Å) S fik Aki (s−1) T%

4s2 1S 4s4p 3Po 1 3 3,106 1.655e−03 1.618e−04 3.729e + 04 62

4s2 1S 4s4p 1Po 1 3 2,153 1.059e + 01 1.493e + 00 7.161e + 08 3

4s4p 3Po 4s4d 1Po 3 5 3,358 3.254e−04 9.810e−06 3.481e + 03 59

5 5 3,400 1.287e−04 2.301e−06 1.328e + 03 59

4s4p 3Po 4p2 3P 1 3 2,089 3.762e + 00 5.471e−01 2.789e + 08 2

3 1 2,109 3.756e + 00 1.805e−01 8.140e + 08 4

3 3 2,096 2.818e + 00 1.361e−01 2.065e + 08 3

3 5 2,081 4.701e + 00 2.288e−01 2.115e + 08 2

5 3 2,112 4.686e + 00 1.348e−01 3.357e + 08 5

5 5 2,096 1.403e + 01 4.067e−01 6.173e + 08 3

4s4p 3Po 4p2 1D 3 5 1,852 5.491e−04 3.003e−05 3.505e + 04 39

5 5 1,864 2.585e−02 8.424e−04 1.617e + 06 14

4s4p 3Po 4p2 1S 3 1 1,620 1.565e−03 9.782e−05 7.462e + 05 26

4s4p 1Po 4s4d 1Po 3 5 6,439 2.837e + 01 4.461e−01 4.306e + 07 9

4s4p 1Po 4p2 3P 3 1 3,010 2.002e−03 6.735e−05 1.487e + 05 22

3 3 2,989 4.188e−04 1.419e−05 1.059e + 04 47

3 5 2,957 4.679e−02 1.602e−03 7.334e + 05 25

4s4p 1Po 4p2 1D 3 5 2,515 2.879e + 01 1.159e + 00 7.332e + 08 13

4s4p 1Po 4p2 1S 3 1 2,105 3.246e + 00 1.561e−01 7.045e + 08 16

indicator with 4s2 1S0 – 4s4p 1Po
1 and 4s4p 3Po

J – 4p2 3PJ

being the most accurate. For intercombination lines, the dis-
crepancy is always larger. Part of this discrepancy is due to the
fact that the non-relativistic form of the velocity operator used
in Breit–Pauli calculations has not included all of the first-
order corrections, but similar discrepancies are also observed
in fully relativistic calculations (see Table D of Ref. [20]). In
relativistic configuration interaction calculations, it has been
shown that the discrepancy is greatly reduced by the inclu-
sion of the contributions from the negative energy sea [21].

Thus it is not clear how this factor can be used as an indicator
of accuracy for intercombination lines where fine-structure
splitting may be a better indicator.

5 Extensions for photoionization calculations

The bound-state calculations described in the previous sec-
tion were extended through the use of the B-spline R-matrix
method (BSR) [13] for the 4p2 resonances in the continuum.
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In this method, the energy dependent wave function for a
given J is assumed to have the form

�(J, E) =
∑

l,L S J

�c(4skl L S J ; E) + C(E)�p(J ; E), (8)

where �c(4skl L S J ; E) is an energy dependent L S J chan-
nel function and �p(L S J ; E) represents the expansions for
the perturber for a specific J ,

C(E)�p(J ; E) =
∑
i,L S

ai,L S(J ; E)�(γi L S J ). (9)

The latter expansion includes all configuration states for the
bound-state Breit–Pauli calculation for a given J , with those
CSFs excluded (such as 4snd) that could be a basis for
the continuum portion. What needs to be computed are the
radial functions for the continuum function and the energy
dependent ai,L S(J ; E) coefficients. The continuum radial
functions are approximated by an expansion in terms of a
B-spline basis inside a box of radius R = 60, and extended
to the outer region by R-matrix methods. The BSR method
allows orbitals to be non-orthogonal and no orthogonality
between the perturber and the channel functions was impo-
sed, except for 〈4s | ks〉 = 0 because the 4s2 CSF was inclu-
ded in the perturber expansion. Unlike MCHF, which relies
on angular momentum theory to determine energy expres-
sions [18], BSR uses determinantal methods. For CSFs such
as 3d94d5d6d many terms are generated, largely because of
possible overlap integrals. For this reason, only those CSFs
were included in a perturber expansion that had a coefficient
greater than 0.0001 in magnitude in the normalized Breit–
Pauli expansions. Furthermore, the s-o-o and s–s operators
of the Breit–Pauli Hamiltonian were only included for the
first 2,000 CSFs. In addition, the target expansion retained
only those CSFs with coefficients greater than 0.005, raising
the ionization limit somewhat.

The MCHF calculations were modified for this extension.
As mentioned earlier the 5d orbital in the BP(2) calculation
represented the interaction of 4p2 1D with high-lying 4snd
CSFs. In BSR, these interactions would be part of the channel
function and a more compact perturber expansion was nee-
ded. Consequently, 4s5s and 4s5d were eliminated from the
expansions and the radial orbitals were optimized for 4s4d
and 4p2 1D, 4p2 3P, and 4s2 and 4p2 1S.

Table 5 indicates the operators that may contribute to the
interaction between the perturber and the continuum chan-
nels. Generally, the Coulomb operators have the largest effect,
followed by the spin–orbit operator. Though contributions
from the spin-other-orbit are numerous, their overall effect
is small. Contributions from Coulomb interactions appear
for J = 0 and J = 2, with the latter including a contri-
bution from the spin–orbit operator. Note that for J = 1

Table 5 Types of interactions for different bound configuration state
functions and different continuum channels

Bound CSF Continuum CSF

4skd 1D2 4s4d 3DJ 4sks 1S0 4sks 3S1

4s2 1S0 – – c –

4p2 1S0 – – c –
1D2 c s-o-o – –
3PJ s-o-o s-o-o, s–s s-o-o s-o-o

4s4d 1D2 c s–o, s-o-o – –

c Coulomb, s–o spin–orbit, s-o-o spin-other-orbit, s–s spin–spin

the only operator contributing to the interaction between the
4p2 CSFs and the continuum channels is the spin-other-orbit
operator. Since the effect of correlation between 4p2 1D and
4s4d 1D is much stronger than between 4p2 and 4s2 or 4s5s
1S, this table suggests an extremely narrow resonance for
4p2 3P1, a narrow resonance for 3P0, a moderate width for
3P2, and wider resonances for 1S0 and 1D2. Experiment,
however, has shown the 3P1 level to have a larger width than
3P0. This can be explained in terms of the wave function
expansions of Table 3. All levels of 4p2 have a 4p5p com-
ponent of about 2%. If this component is treated as part of the
zero-order wave function, a first-order relativistic calculation
needs to include all the terms of 4p5p. Thus, in order to get
accurate line widths, once the radial functions had been deter-
mined, the expansions for 1D, 3P and 1S were concatenated
and similar expansions for 1P, 3S, and 3D were added to the
Breit–Pauli expansions (see Eq. 7). Together with the MCHF
radial orbitals, these CSFs defined the Breit–Pauli interaction
matrix. Selected eigenvalues and eigenvectors were deter-
mined. Those with coefficients greater than 0.0001 in one
or more eigenvectors for 4p2 with J = 0, 1, 2 defined the
J -dependent perturber expansions for the BSR calculations.

Once the energy dependent wavefunctions for J = 0, 1, 2
were determined, the positions and widths of the resonances
could be determined. The position (Er ) and the width (�) of
a resonance can be extracted by fitting C(E)2 to a Lorentzian
profile, i.e.,

C(E)2 = 1

π

1
2�

(E − Er )
2 + 1

4�2
. (10)

Figure 1 shows a plot of C(E)2, on a logarithmic scale, for
the three even parity J = 0, 1, 2 continuum wave functions
as a function of the energy of the contiuum electron or, equi-
valently, the energy relative to the ionization limit. Note the
overlapping 4p2 1D2 and 4p2 3P2 resonances. The former
has a relatively low height over a broad range, whereas the
latter is a well-defined resonance of moderate height. The
width of 1D2 was not accurately determined. The energy of
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Table 6 The positions (Er ) and width (�) at half height for the 4p2

resonances in cm−1

Term Present Ref. [2] Ref. [12]

Er (BP(3)) Er (BSR) � Er � �

3P0 4,013 4,007 0.072 4,406a <0.020
3P1 4,225 4,220 0.243 4,625a 0.36±0.05
3P2 4,596 4,598 21.46 5,023a 21.7a 22.2±0.5
1D2 9,909 9,125 8517.0 6,800
1S0 17,444 17,018 629.2 <170

The position is relative to an ionization limit: 75,452 cm−1 for BP(3)
and BSR, 75,769 cm−1 for Ref. [2]
a Experimental values from Ref. [2]

the continuum electron is given in eV below the graph and
in cm−1 above the graph in order to relate the graph to the
data of Table 6.

Table 6 reports the positions and widths of the 4p2 reso-
nances and compares these with other data. Included with
the present results are positions of the resonances in calcula-
tions that ignore the continuum [BP(3)] and in calculations
(BSR) that include the 4sns/ks or 4snd/kd channels. For
the levels of 3P, the differences in positions are small, but the
position of 1D2 has been significantly affected by the inter-
action with 4snd/kd. For 1S0 the interaction with 4sns/ks
has been considerably less. In both cases, the position has
been lowered. These positions are reported relative to the
computed 4s 2S1/2 ionization limit whereas the positions of
the observed levels are reported with respect to the observed
ionization limit. These shifts (399, 405, 425 cm−1), respec-
tively, are a reflection largely of the different values for the
ionization limits. The computed line width for the 3P2 is
in good agreement with the value reported by Martin and
Kaufman. They obtained their value by measuring the width
of a microphotometer trace at half the peak intensity for the
4s4p 3Po

1 −4p2 3P2 transition. Chantpie et al. [12] investi-
gated the 4s4p 3Po

J – 4p2 3P resonances using an optogalva-
nic detection method as well as through single configuration,
fully relativistic calculations. Their theoretical results were in
agreement with their experimental values reported in Table 6.
They found the line width for 4p2 3P1 to be greater than that
for 3P0. Aymar et al. [22] argued that, in Cd, the line width
was affected by the difference in the 5p1/2 and 5p3/2 orbitals,
which is accounted for naturally in a fully relativistic calcu-
lation. In 4p2 3P1 the most important interaction was found
to be the Coulomb interaction with the 4sks 3S1 continuum.
In our Breit–Pauli approach, this effect can be interpreted as
a second-order cross-interaction between the spin–orbit ope-
rator and the Coulomb operator, namely 〈4p2 3P1 | Hs−o |
4p5p 3S1〉〈4p5p 3S1 | Hcoulomb | 4sks 3S1〉. The present cal-
culations confirm that this interaction is larger than the inter-
action of the bound component for the J = 0 channel with

its continuum, namely 〈c14s2 + c24p2 1S0 | H | 4sks 1S0〉.
This interaction includes the coulomb interaction that usually
is larger than the spin–orbit interaction (see Table 5). For
the 1D2 and 1S0 resonances, the line width values from
Ref. [2] were estimated from trends along the sequence of
F2(4p, 4p) Slater integrals and are approximate at best.

6 Photoionization cross sections

Once the energy dependent wave functions for the different
J -values were determined for the continuum region, the
Breit–Pauli wave functions for the initial states were recom-
puted in the Condon and Shortley phase conventions needed
by the BSR code and then used to compute the photoioniza-
tion cross sections.

Figure 2 shows the total cross section to 4p2 3P for pho-
toionization from different 4s4p initial states as a function
of the continuum electron energy. The latter is also the total
energy relative to the ionization limit as well as the energy
of the ejected electron. Note the very narrow resonance to
3P0, the noticeable width of 3P1 and the significant width
of 3P2. For 3Po

J initial states the cross section for transitions
to 3P2 do not exhibit cancellation, whereas the cross section
for excitation from the 1P1 initial state vanishes (has a zero)
near the position of the 3P2 resonance.

Figure 3 shows the length and velocity forms of the total
cross section for photoionization from the 4s4p 1Po

1 level
on a logarithmic scale. Note the very broad cross section
for contributions from the 4p2 1D2 region and the excellent
agreement in length and velocity forms for the J = 0 − 2
continua.

Finally, in Fig. 4 total cross sections for photoionization
from 4s4p levels are shown as a function of the wavelength.

0.5 0.55 0.6

Continuum Electron Energy (eV)

10

100

1000

10000

T
ot

al
 P

ho
to

io
ni

za
tio

n 
C

ro
ss

 S
ec

tio
n 

 (
M

B
)

1
P

o

1
3
P

o

0
3
P

o

1
3
P

o

2

4p
2 3

P
0 4p

2 3
P

1 4p
2 3

P
2

Fig. 2 Total photoionization cross sections in the region of 4p2 3PJ
resonances as a function of the energy (in eV) of the continuum electron
for different initial states
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Fig. 4 Total photoionization cross sections for excitation from
different initial states to 4p2 resonances as a function of wavelength

There are two moderately broad resonances, namely 3Po
1,2 –

3P2. The broad resonance at about 2,175 Å is 1Po
1 – 1S0. The

others are narrow lines with the 3Po
1 – 3P1 line overlapping

the broad 3Po
2 – 3P2 line.

7 Conclusion

Even in neutral Zn, relativistic effects are important in the
calculation of cross sections for photoionization from 4s4p
levels to the 4p2 resonances. A Breit–Pauli calculation

required the inclusion of all terms of 4p5p in the perturber
expansions and not only those of 4p2. The additional terms
improved the 4p2 3P0 – 3P1 energy separation from 232 cm−1

(BP(2)) to 212 cm−1 (BP(3)), compared with 219 cm−1 for
observed [2]. The relative position of these levels is not signi-
ficantly affected by high-lying Rydberg CSFs nor by the
continuum. In this study we did not investigate the use of
non-orthogonal orbitals for perturbers or the introduction of
additional target states such as 3d104p 2Po.
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